

2010 Sec 4 Physics Revision 9.1
09 Lenses

Name: \qquad () Class: 41 \qquad Date: \qquad

At the end of the activity, you should be able to :

- state the main features of a thin converging lens
- draw a ray diagram to find an image location
- name some applications of thin converging lens

9.1 Key terms for lenses

- A converging lens or \qquad lens has two \qquad , one on each side of the lens.
- The centre of the lens is called \qquad centre C.
- Light rays parallel to the \qquad axis are focused onto a point called the \qquad focus F .
- The distance between C and F is called the \qquad length f .
- Object distance u is the distance from the \qquad to the centre of the lens.
- Image distance v is the distance from the \qquad to the centre of the lens.

9.2 3 rules for drawing light rays

- On the diagram below, draw the 3 rays which are commonly used to construct light ray diagrams.

9.3 Quiz (4 questions) - Check answers online

1. Which of the following correctly describes the image formed by a thin converging lens when used as a magnifying glass?
A. Real, upright and magnified.
B. Real, inverted and magnified.
C. Virtual, upright and magnified.
D. Virtual, inverted and magnified.
2. In the diagram, F are the principal foci of the converging lens.

An object is placed at O . At which point is the base of the image formed?

3. An object of height 5 cm is placed at 15 cm from a convex lens of focal length 10 cm .

Method 1: Use the online simulation at http://johnlittlephysics.pbworks.com/lenses

- under Others: simulationactual.swf Ray diagram simulation
\rightarrow move the slider to $u=15 \mathrm{~cm}$.
Draw rays on the above diagram.
Image distance v = \qquad

Method 2: Draw an accurate ray diagram using the scale given below.

Image distance v = \qquad

Method 3: \quad Apply the lens formula $\quad 1 / f=1 / u+1 / v$

Image distance v = \qquad
4. Images formed by an object at different distances from a converging lens have different characteristics. Use any of the following words (once or more times):
real, virtual, inverted, upright,
diminished, magnified, same size as the object

Object distance u	Characteristics			*Applications
		Real or virtual	Upright or inverted	Size

[^0]
9.4 The human eye

(a) For the human eye, what is the condition for the object distance u ?

Hint: Click on cases under "Images formed by a converging lens".
(b) Which other application has the same condition for u as part (a)?
(c) Take a close look at the structure of the human eye.

Website:

From http://johnlittlephysics.pbworks.com/
\rightarrow Revise \rightarrow Topic 9: Lenses \rightarrow The human eye - physics behind it
(i) On which part of the eye is the image focused on? \qquad
(ii) If a person is short-sighted or near-sighted, the image from a distant object would be focused on a point the retina.
(iii) To correct the short-sightedness, the person would wear spectacles with \qquad
\qquad lenses.

[^0]: * Click on each case under "Images formed by a converging lens"

