

# 2010 Sec 4 Physics Revision 9.1 09 Lenses

| Name: | ( ) | Class: 4/ | Date: |
|-------|-----|-----------|-------|
|-------|-----|-----------|-------|

At the end of the activity, you should be able to:

- state the main features of a thin converging lens
- draw a ray diagram to find an image location
- name some applications of thin converging lens

## 9.1 Key terms for lenses

- A converging lens or \_\_\_\_\_ lens has two \_\_\_\_\_, one on each side of the lens.
- The centre of the lens is called \_\_\_\_\_ centre C.
- Light rays parallel to the \_\_\_\_\_ axis are focused onto a point called the \_\_\_\_\_ focus F.
- The distance between C and F is called the \_\_\_\_\_ length f.
- Object distance u is the distance from the \_\_\_\_\_\_ to the centre of the lens.
- Image distance v is the distance from the \_\_\_\_\_ to the centre of the lens.

#### 9.2 3 rules for drawing light rays

• On the diagram below, draw the 3 rays which are commonly used to construct light ray diagrams.



### 9.3 Quiz (4 questions) - Check answers online

- 1. Which of the following correctly describes the image formed by a thin converging lens when used as a magnifying glass?
  - A. Real, upright and magnified.
  - B. Real, inverted and magnified.
  - C. Virtual, upright and magnified.
  - D. Virtual, inverted and magnified.

2. In the diagram, F are the principal foci of the converging lens.
An object is placed at O. At which point is the base of the image formed?



An object of height 5 cm is placed at 15 cm from a convex lens of focal length 10 cm.
 Find the image distance.



**Method 1**: Use the online simulation at <a href="http://johnlittlephysics.pbworks.com/lenses">http://johnlittlephysics.pbworks.com/lenses</a>

- under Others: simulationactual.swf Ray diagram simulation
- $\rightarrow$  move the slider to u = 15 cm. Draw rays on the above diagram.

Image distance v = \_\_\_\_\_

**Method 2**: Draw an accurate ray diagram using the scale given below.



Image distance v = \_\_\_\_\_

**Method 3**: Apply the lens formula 1/f = 1/u + 1/v

| Image distance v = _ |  |
|----------------------|--|
|----------------------|--|

4. Images formed by an object at different distances from a converging lens have different characteristics. Use any of the following words (once or more times):

real, virtual, inverted, upright, diminished, magnified, same size as the object

| Object<br>distance u | Characteristics |                     |      | *Applications |
|----------------------|-----------------|---------------------|------|---------------|
|                      | Real or virtual | Upright or inverted | Size |               |
| 0 < u < f            |                 |                     |      |               |
| u = f                |                 |                     |      |               |
| f < u < 2f           |                 |                     |      |               |
| u = 2f               |                 |                     |      |               |
| u > 2f               |                 |                     |      |               |

<sup>\*</sup> Click on each case under "Images formed by a converging lens"

#### 9.4 The human eye



(a) For the human eye, what is the condition for the object distance u?

Hint: Click on cases under "Images formed by a converging lens".

- (b) Which other application has the same condition for u as part (a)?
- (c) Take a close look at the structure of the human eye.

Website:

From <a href="http://johnlittlephysics.pbworks.com/">http://johnlittlephysics.pbworks.com/</a>

- → Revise → Topic 9: Lenses → The human eye physics behind it
  - (i) On which part of the eye is the image focused on?
  - (ii) If a person is short-sighted or near-sighted, the image from a distant object would be focused on a point \_\_\_\_\_ the retina.
  - (iii) To correct the short-sightedness, the person would wear spectacles with \_\_\_ lenses.